Filter Aktif

Elektronika (TKE 4012)

Eka Maulana

Real filter response

- Ideal (brickwall) filters do not exist.
- Real filters have an approximate response.
- The attenuation of an ideal filter is ∞ in the stopband.
- Real filter attenuation is $v_{out}/v_{out(mid)}$:

$$3 dB = 0.5$$

$$12 dB = 0.25$$

$$20 dB = 0.1$$

The order of a filter

- In an LC type, the order is equal to the number of inductors and capacitors in the filter.
- In an RC type, the order is equal to the number of capacitors in the filter.
- In an active type, the order is approximately equal to the number of capacitors in the filter.

Filter approximations

- <u>Butterworth</u> (maximally flat response): rolloff = 20n dB/decade where n is the order of the filter
- <u>Chebyshev</u> (equal ripple response): the number of ripples = n/2
- Inverse Chebyshev (rippled stopband).
- Elliptic (optimum transition)
- Bessel (linear phase shift)

Note: monotonic filters have no ripple in the stopband.

A second-order low-pass LC filter

L	C	$\mathbf{f}_{\mathbf{R}}$	Q
9.55 mH	2.65 μF	1 kHz	10
47.7 mH	531 nF	1 kHz	2
135 mH	187 nF	1 kHz	0.707

The effect of Q on second-order response

The Butterworth response is critically damped. The Bessel response is overdamped ($Q=0.577\ldots$ not graphed). The damping factor is α .

Sallen-Key second-order low-pass filter

Second-order responses

- Butterworth: Q = 0.707; $K_c = 1$
- Bessel: Q = 0.577; $K_c = 0.786$
- Cutoff frequency: $f_c = K_c f_p$
- Peaked response: Q > 0.707
 - * $f_0 = K_0 f_p$ (the peaking frequency)
 - * $f_c = K_c f_p$ (the edge frequency)
 - * $\mathbf{f}_{3dB} = \mathbf{K}_3 \mathbf{f}_p$

Higher-order filters

- Cascade second-order stages to obtain even-order response.
- Cascade second-order stages plus one first-order stage to obtain odd-order response.
- The dB attenuation is cumulative.
- Filter design can be tedious and complex.
- Tables and filter-design software are used.

Sallen-Key equal-component filter

Sallen-Key second-order high-pass filter

Tunable MFB bandpass filter with constant bandwidth

Sallen-Key second-order notch filter

First-order all-pass lag filter

$$A_v = 1$$
 $f_0 = \frac{1}{2\pi RC}$ $\phi = -2 \arctan \frac{f}{f_0}$

First-order all-pass lead filter

$$A_v = -1$$
 $f_0 = \frac{1}{2\pi RC}$ $\phi = 2 \arctan \frac{f_0}{f}$

Linear phase shift

- Required to prevent distortion of digital signals
- Constant delay for all frequencies in the passband
- Bessel design meets requirements but rolloff might not be adequate
- Designers sometimes use a non-Bessel design followed by an all-pass filter to correct the phase shift

State variable filter

