Respons Frekuensi

Elektronika (TKE 4012)

Eka Maulana

The frequency response curve of an ac amplifier

The gain is maximum in the midband.

Review of logarithms

- A logarithm is an exponent
- If $x = 10^y$, then $y = \log_{10} x$
- y = log 10 = 1
- y = log 100 = 2
- y = log 1000 = 3
- y = log 0.1 = -1
- y = log 0.01 = -2
- y = log 0.001 = -3

Definition of G_{dB}

- $G = p_{out}/p_{in}$
- $G_{dB} = 10 \log G$
- Memorize:

$$- \text{ if } G = 2, G_{dB} = +3$$

$$- \text{ if } G = 0.5, G_{dB} = -3$$

$$- \text{ if } G = 10, G_{dB} = +10$$

$$-$$
 if $G = 0.1$, $G_{dB} = -10$

Definition of A_{dB}

- $A = v_{out}/v_{in}$
- $A_{db} = 20 \log A$
- Memorize:

$$>$$
 if $A = 2$, $A_{dB} = +6$

$$>$$
 if $A = 0.5$, $A_{dB} = -6$

$$>$$
 if $A = 10$, $A_{dB} = +20$

$$>$$
 if $A = 0.1$, $A_{dB} = -20$

• Cascade: $A = A_1A_2$, $A_{dB} = A_{1dB} + A_{2dB}$

More on the decibel

- $G_{dB} = A_{dB}$ only if impedance matched
- $G = antilog G_{dB}/10$
- $A = antilog A_{dB}/20$
- $P_{dBm} = 10 \log P/1 \text{ mW}$
- $P = antilog P_{dBm}/10$
- $V_{dBV} = 20 \log V$
- $V = antilog V_{dBV}/20$

Linear scale

Logarithmic scale

A logarithmic scale compresses large values and allows a large range to be covered without losing resolution for the smaller values.

Bode plots

- Use semilogarithmic graph paper (the horizontal axis is logarithmic; the vertical is linear)
- Plot dB voltage gain on the vertical axis
- Plot frequency on the horizontal axis
- An octave refers to a ratio of 2
- A decade refers to a ratio of 10

Ideal Bode plot of an ac amplifier

Amplitude response of RC lag circuit

$$\mathbf{f}_2 = \frac{1}{2\pi \mathbf{RC}}$$

$$A = \frac{1}{\sqrt{1 + \left(\frac{f}{f_2}\right)^2}}$$

Angular response of RC lag circuit

$$\phi = -\arctan \frac{\mathbf{f}}{\mathbf{f}_2}$$

Ideal Bode plot of a dc amplifier with two break frequencies.

Inverting amplifier with feedback capacitor

Miller equivalent circuit

$$C_{in} = C(A+1)$$

$$C_{out} = C \frac{A+1}{A}$$

Frequency compensation

- Most op amps are internally compensated to prevent oscillations
- One dominant internal compensation capacitor rolls off the gain at 20 dB/decade
- IC capacitors are limited to the pF range
- The Miller effect makes the internal compensation capacitor equivalent to a much larger capacitor

Square-wave response of a circuit with limited bandwidth

Cutoff frequency of input coupling capacitor

Cutoff frequency of output coupling capacitor

Cutoff frequency of emitter bypass capacitor

Combined frequency effects

- The input coupling, output coupling, and emitter bypass capacitors each produce a cutoff frequency.
- One is usually dominant (the highest frequency) and produces a rolloff of 20 dB/decade as frequency decreases.
- When the next cutoff is reached, the gain rolloff increases to 40 dB/decade.
- When the third is reached, it becomes 60 dB/decade.

Base and collector bypass circuits

Bypass circuits

- The base bypass circuit contains the internal base-emitter capacitance (C'_e) and the Miller capacitance due to the internal collector-base feedback capacitance (C'_c)
- The collector bypass circuit contains the Miller capacitance and the stray (wiring) capacitance.