Operational Amplifier \& aplikasinya

Elektronika (TKE 4012)

Eka Maulana

Op Amp

- Op Amp is short for operational amplifier
- Amplifiers provide gains in voltage or current
- Op amps can convert current to voltage

Simbol Op Amp

Applications of Op Amps

- Op amps can be configured in many different ways using resistors and other components
- Most configurations use feedback
- Op amps can provide a buffer between two circuits
- Op amps can be used to implement integrators and differentiators
- Lowpass and bandpass filters

Aplikasi Op-amp

- Komparator
- Penguat Non-inverting
- Penguat Inverting
- Penguat penjumlah
- Voltage follower
- Converter Tegangan ke Arus
- Integrator \& Diferensiator
- Penguat diferensial
- Penguat instrumentasi
- Penguat histerisis

The Op Amp Model

- An operational amplifier is modeled as a voltage-controlled voltage source.

Typical vs. Ideal Op Amps

Typical Op Amp:

- The input resistance (impedance) $R_{\text {in }}$ is very large (practically infinite).
- The voltage gain A is very large (practically infinite).

Ideal Op Amp:

- The input resistance is infinite.
- The gain is infinite.
- The op amp is in a negative feedback configuration.

Consequences of the Ideal

- Infinite input resistance means the current into the inverting (-) input is zero:

$$
i_{-}=0
$$

- Infinite gain means the difference between v_{+}and v_{-}is zero:

$$
v_{+}-v_{-}=0
$$

Typical Op Amp Parameters

Parameter	Variable	Typical Ranges	Ideal Values
Open-Loop Voltage Gain	A	10^{5} to 10^{8}	∞

Input
Resistance

Ri
10^{5} to $10^{13} \mathrm{~W}$
∞ W
0 W

Supply
Voltage
Vcc/V
5 to 30 V
$-\mathrm{Vcc} / \mathrm{V} \quad-30 \mathrm{~V}$ to 0 V
N/A
N/A

Symbols for Ideal and Real Op Amps

OpAmp

uA741

LM324

LM111

Voltage Transfer Characteristic

Example \#1: Voltage Comparator

Penguat Inverting Basic

Solving the Amplifier Circuit

Apply KCL at the inverting (-) input:

$$
\begin{gathered}
i_{-}=0 \\
i_{1}=\frac{V_{\text {in }}-V_{-}}{R_{1}}=\frac{V_{\text {in }}}{R_{1}} \\
i_{2}=\frac{V_{\text {out }}-V_{-}}{R_{2}}=\frac{V_{\text {out }}}{R_{2}}
\end{gathered}
$$

Solve for $V_{\text {out }}$

- From KCL

$$
\begin{gathered}
i_{1}+i_{2}+i_{-}=0 \\
\frac{V_{\text {in }}}{R_{1}}+\frac{V_{\text {out }}}{R_{2}}+0=0
\end{gathered}
$$

$$
\frac{V_{\text {in }}}{R_{1}}=-\frac{V_{\text {out }}}{R_{2}}
$$

- Thus, the amplifier gain is

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}}
$$

Recap

- The ideal op-amp model leads to the following conditions:

$$
\begin{gathered}
i_{-}=0=i_{+} \\
v_{+}=v_{-}
\end{gathered}
$$

- These conditions are used, along with KCL and other analysis techniques (e.g., nodal), to solve for the output voltage in terms of the input(s)

Penguat Non-inverting

KCL at the Inverting Input

$$
\begin{gathered}
i_{-}=0 \\
i_{1}=\frac{-v_{-}}{R_{1}}=\frac{-v_{\text {in }}}{R_{1}} \\
i_{2}=\frac{v_{\text {out }}-v_{-}}{R_{2}} \\
=\frac{v_{\text {out }}-v_{\text {in }}}{R_{2}}
\end{gathered}
$$

Solve for $v_{\text {out }}$

$$
\begin{gathered}
i_{1}+i_{2}+i_{-}=0 \\
\frac{-v_{\text {in }}}{R_{1}}+\frac{v_{\text {out }}-v_{\text {in }}}{R_{2}}=0 \\
v_{\text {out }}=v_{\text {in }}\left(1+\frac{R_{2}}{R_{1}}\right)
\end{gathered}
$$

- Hence, the non-inverting amplifier has a gained output (> unity) relative to the resistance ratio

Rangkaian Penjumlah

KCL at the Inverting Input

$$
i_{f}=\frac{v_{\text {out }}-v_{-}}{i_{1}-v_{-}}=\frac{v_{\text {out }}}{R_{1}}=\frac{v_{1}}{R_{1}}
$$

Solve for $v_{\text {out }}$

$$
\begin{aligned}
& i_{1}+i_{2}+i_{f}+i_{-}=0 \\
& \frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{v_{\text {out }}}{R_{f}}=0 \\
& v_{\text {out }}=-\frac{R_{f}}{R_{1}} v_{1}-\frac{R_{f}}{R_{2}} v_{2}
\end{aligned}
$$

- So, the mixer circuit output is a (negative) combination of the input voltages

ac coupled inverting amplifier

Adjustable bandwidth

ac coupled noninverting amplifier

JFET controlled inverter/noninverter

Adjustable gain of ± 1

Phase shifter

Differential amplifier

$$
\pm 2 \frac{\Delta \mathbf{R}}{\mathbf{R}}<\mathrm{A}_{\mathrm{CM}}< \pm 4 \frac{\Delta \mathbf{R}}{\mathbf{R}}
$$

Wheatstone bridge

Wheatstone bridge

- The differential output signal is small.
- The common-mode output signal is large.
- Differential amplifiers are a good match.
- Transducers convert nonelectrical quantities into an electrical quantity such as resistance:
- examples: photoresistor, thermistor, strain gage

Instrumentation amplifiers

- Differential amplifiers optimized for dc performance
- Large differential voltage gain
- High CMRR
- Low input offsets
- Low temperature drift
- High input impedance

Instrumentation amplifier

Monolithic instrumentation amplifiers

- Use laser-trimmed resistors for high performance.
- Resistor \mathbf{R}_{G} is external and is selected to set the differential gain.
- Resistor \mathbf{R}_{G} can be split into two devices for guard driving (bootstrapping the cable shield to the common-mode potential).

Guard driving

Summing amp with inverting and noninverting inputs

D/A converter

Possible combinations $=2^{N}=2^{4}=16$

Unidirectional current booster

Bidirectional current booster

AGC circuit

Single-supply inverting amplifier

