MOSFET (Metal Oxide Semiconductor Field Effect Transitor)

Elektronika (TKE 4012)

Eka Maulana

Depletion-mode MOSFET

Since the gate is insulated, this device can also be operated in the *enhancement mode*.

MOSFETs

- Current flows through a narrow channel between the gate and substrate.
- SiO₂ insulates the gate from the channel.
- Depletion mode forces the carriers from the channel.
- Enhancement mode attracts carriers into the channel.
- E-MOSFETs are normally-off devices.

n-channel E-MOSFET

Gate bias enhances the channel and turns the device on.

n-channel E-MOSFET

- The p-substrate extends all the way to the silicon dioxide.
- No n-channel exists between the source and drain.
- This transistor is *normally off* when the gate voltage is zero.
- A positive gate voltage attracts electrons into the p-region to create an n-type inversion layer and turns the device on.

p-channel E-MOSFET

Gate bias enhances the channel and turns the device on.

p-channel E-MOSFET

- The n-substrate extends all the way to the silicon dioxide.
- No p-channel exists between the source and drain.
- This transistor is *normally off* when the gate voltage is zero.
- A negative gate voltage attracts holes into the n-region to create an p-type inversion layer and turns the device on.

n-channel E-MOSFET drain curves

n-channel E-MOSFET transconductance curve

Gate breakdown

- The SiO₂ insulating layer is very thin.
- It is easily destroyed by excessive gatesource voltage.
- $V_{GS(max)}$ ratings are typically in tens of volts.
- Circuit transients and static discharges can cause damage.
- Some devices have built-in gate protection.

Drain-source on resistance

Biasing in the ohmic region

 $I_{D(sat)} < I_{D(on)}$ when $V_{GS} = V_{GS(on)}$ ensures saturation

Passive and active loads

Passive load

Active load (for Q1, $V_{GS} = V_{DS}$)

$V_{GS} = V_{DS}$ produces a two-terminal curve

Active loading in a digital inverter

It's desirable that $R_{DSQ2(on)} \ll R_{DQ1}$.

(The ideal output swings from 0 volts to $+V_{DD}$.)

Complementary MOS (CMOS) inverter

CMOS inverter input-output graph

High-power EMOS

- Use different channel geometries to extend ratings
- Brand names such as VMOS, TMOS and hexFET
- No thermal runaway
- Can operate in parallel without current hogging
- Faster switching due to no minority carriers

dc-to-ac converter

dc-to-dc converter

