J-FET (Junction Field Effect Transitor)

Elektronika (TKE 4012)

Eka Maulana

maulana.lecture.ub.ac.id

Junction field effect transistor (JFET)

JFET

- Unipolar device (one polarity of charge carrier)
- Voltage controlled (gate voltage controls drain current)
- High input impedance
- No minority carrier storage
- Source and drain are interchangeable in most low-frequency applications

Drain family of curves

Drain curves

- With V_{GS} = 0 the drain current is maximum at I_{DSS}
- **V**_P = the pinchoff voltage
- When $V_{DS} = V_P$ the depletion layers almost touch
- With V_{DS} > V_P the JFET acts as a current source
- $V_{GS(off)} = -V_P$

Ohmic region

- V_P separates the active region from the ohmic region.
- The ohmic region is the almost vertical part of the drain curve.
- In this region, a JFET acts as a resistor.
- $\mathbf{R}_{\mathbf{DS}} = \mathbf{V}_{\mathbf{P}} / \mathbf{I}_{\mathbf{DSS}}$

Transconductance curve

Gate bias is suitable for the *ohmic region*.

Q point in the ohmic region

Voltage-divider bias

Gate bias is not suitable for the active region.

$$\mathbf{I}_{\mathbf{D}(\text{sat})} = \frac{\mathbf{V}_{\mathbf{D}\mathbf{D}}}{\mathbf{R}_{\mathbf{D}} + \mathbf{R}_{\mathbf{S}}}$$
$$\mathbf{V}_{\mathbf{S}} = \mathbf{V}_{\mathbf{G}} - \mathbf{V}_{\mathbf{G}\mathbf{S}}$$

$$\mathbf{I}_{\mathbf{DQ}} = \frac{\mathbf{V}_{\mathbf{G}} - \mathbf{V}_{\mathbf{GS}}}{\mathbf{R}_{\mathbf{S}}}$$

Q point in the active region

Transconductance

- Tells how effective the gate voltage is in controlling the drain current.
- $\mathbf{g}_{\mathbf{m}} = \mathbf{i}_{\mathbf{d}} / \mathbf{v}_{\mathbf{gs}}$
- Common units for JFETs are the micromho (µmho) or the more modern microsiemen (µS).
- g_m is the slope of the transconductance curve.
- g_{m0} is the maximum value and occurs at $V_{GS} = 0$.

Source follower

Multiplexer

Voltage-controlled resistance

- Operates in the ohmic region with V_{GS} values between 0 and cutoff.
- Works well for ac signals of 200 mV_{PP} or less.
- Small-signal resistance: $r_{ds} = V_{DS}/I_D$
- As V_{GS} becomes more negative, r_{ds} increases.
- Both series and shunt operation can be used.