
Chapter 10

Tuning of PID controllers

10.1 Introduction

This chapter describes several methods for tuning of controller parameters
in PID controllers, that is, methods for finding proper values of Kp, Ti and
Td.

Some of the methods — the Good Gain method1, and the Ziegler-Nichols’
method — are experimental, that is, they require experiments to be made
on the process to be controlled. If you have a mathematical process model,
you can of course use these experimental methods on a simulator based on
the model.

One method — Skogestad’s method — is model-based, i.e. you can get good
PID parameter values directly from the transfer function model of the
process, without doing any experiment. Still, you should verify that the
PID tuning is proper by simulating.

What is the aim of the controller tuning? If it was possible to obtain, we
would like to obtain both of the following for the control system:

• Fast responses, and

• Good stability

Unfortunately, for practical systems these two wishes can not be achieved
simultaneously. In other words:

1 I am responsible of this name.
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• The faster response, the worse stability, and

• The better stability, the slower response.

So, for the control system, we look for the following compromise:

Acceptable stability, and medium fastness of response

Figure 10.1 illustrates the two mutual excluding wishes presented above,
and the compromise. The figure shows the response in the process output
variable due to a step change of the setpoint. (The responses are with
three different controller gains in a simulated control system.) It is useful
to have this compromise in mind when you perform controller tuning.
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Figure 10.1: In controller tuning we want to achieve this compromise: Accept-
able stability and medium fastness of response.

What is “acceptable stability” more specifically? There exists no single
definition. One simple yet useful definition is as follows. Assume a positive
step change of the setpoint.
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Acceptable stability is when the undershoot that follows the first overshoot

of the response is small, or barely observable.

(If the step change is negative, the terms undershoot and overshoot are
interchanged, of course.) The response shown with thick line in Figure 10.1
is representative for acceptable stability.

As an alternative to observing the response after a step change of the
setpoint, you can regard the response after a step change of the process
disturbance. The definition of acceptable stability is the same as for the
setpoint change, i.e. that the undershoot (or overshoot — depending on the
sign of the disturbance step change) that follows the first overshoot (or
undershoot) is small, or barely observable.

10.2 Good Gain method

The Good Gain method2 is a simple method which seems to give good
results on the lab and on simulators. The method is based on experiments
on a real or simulated control system, see Figure 10.2. (A benefit of the
method as compared to the Ziegler-Nichols’ closed loop method, cf.
Section 10.3, is that it does not require the control system to be brought
into sustained oscillations in the tuning phase.) The procedure described
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Figure 10.2: The Good Gain method for PID tuning is applied to the established

control system.

below assumes a PI controller, which is the most commonly used controller
function (more common than the P controller and the PID controller).

2 I am responsible for this name.
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However, a comment about how to include the D-term, so that the
controller becomes a PID controller, is also given.

1. Bring the process to or close to the normal or specified operation
point by adjusting the nominal control signal u0 (with the controller
in manual mode).

2. Ensure that the controller is a P controller with Kp = 0 (set Ti =∞
and Td = 0). Increase Kp until the control loop gets satisfactory
stability as seen in the response in the measurement signal after e.g.
a step in the setpoint or in the disturbance (exciting with a step in
the disturbance may be impossible on a real system, but it possible
in a simulator). If you do not want to start with Kp = 0, you can try
Kp = 1 (which is a good initial guess in many cases) and then
increase or decrease the Kp value until you observe a slight overshoot
but a well damped response.

3. Set the integral time Ti equal to

Ti = 1.5Tou (10.1)

where Tou is the time between the first overshoot and the first
undershoot of the step response (a step in the setpoint) with the P
controller, see Figure 10.3.

TouSetpoint step
Step response

Figure 10.3: Reading off the time between the first overshoot and the first

undershoot of the step response with P controller

4. Check the stability of the control system by applying a setpoint step.
Because of the introduction of the I-term, the loop with the PI
controller in action will probably have somewhat reduced stability
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than with the P controller only. If you think that the stability has
become too poor, try reducing Kp somewhat, e.g. reduce it to 80% of
the original value.

5. If you want to include the D-term, so that the controller becomes a
PID controller3, you can try setting Td as follows:

Td =
Ti
4

(10.2)

which is the Td—Ti relation that was used by Ziegler and Nichols, cf.
Section 10.3.

Example 10.1 PI controller tuning of a wood-chip level control

system with the Good Gain Method

I have used the Dummies method on a simulator of the level control
system for the wood-chip tank, cf. Figure 7.2 with parameters (7.1) —
(7.9). The PI parameter values became

Kp = 1.4; Ti = 1100 s; Td = 0 s (10.3)

Figure 10.4 shows the resulting responses. The control system seems to
have satisfactory stability. (I did not reduce the Kp value, cf. item 4
above.)

[End of Example 10.1]

10.3 Ziegler-Nichols’ closed loop method

10.3.1 Introduction

Ziegler and Nichols published in 1942 a paper [8] where they described two
methods for tuning the parameters of P-, PI- and PID controllers. These
two methods are the Ziegler-Nichols’ closed loop method4, and the
Ziegler-Nichols’ open loop method5. Of these methods the closed-loop
method is the most useful, and it is described below. The open-loop
method is not described here.

3But remember the drawbacks about the D-term, namely that it amplifies the mea-
surement noise, causing noisy controller signal.

4Also denoted the Ultimate gain method.
5Or the Process reaction curve method
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Figure 10.4: Example 10.1: Level control of the wood-chip tank with a PI

controller.

Ziegler and Nichols [8] used the following definition of acceptable stability
as a basis for their contoller tuning rules: The ratio of the amplitudes of
subsequent peaks in the same direction (due to a step change of the
disturbance or a step change of the setpoint in the control loop) is
approximately 1/4, see Figure 10.5:

A2
A1

=
1

4
(10.4)

However, there is no guaranty that the actual amplitude ratio of a given
control system becomes 1/4 after tuning with one of the Ziegler and
Nichols’ methods, but it should not be very different from 1/4.

This definition of acceptable stability implies worse stability than the
definition given in Section 10.1 of this chapter. It has actually become
common point of view that the 1/4 decay ratio of the step response
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Figure 10.5: If A2/A1 ≈ 1/4 the stability of the system is ok, according to

Ziegler and Nichols

corresponds too poor stability of the control loop. If you think that the
stability of the control loop becomes too poor, you can try to adjust the
controller parameters. The first aid, which may be the only adjustment
needed, is to decrease Kp somewhat, for example a 20% decrease.

It is also important to remember the impact of the measurement noise on
the control signal. The more aggressive controller — fast control — the more
sensitive is the control signal to the measurement noise. Again, to
descrease this sensitivity, the controller gain can be descreased.

Note that the Ziegler-Nichols’ closed loop method can be applied only to
processes having a time delay or having dynamics of order higher than 3.
Here are a few examples of process transfer function models for which the
method can not be used:

H(s) =
K

s
(integrator) (10.5)

H(s) =
K

Ts+ 1
(first order system) (10.6)

H(s) =
K

( s
ω0
)2 + 2ζ s

ω0
+ 1

(second order system) (10.7)

Controller tuning for processes as above can be executed with a transfer
function based method, cf. Section 10.6. For the second order system the
Good Gain Method can also be used.
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10.3.2 The Ziegler-Nichols’ PID tuning procedure

The Ziegler-Nichols’ closed loop method is based on experiments executed
on an established control loop (a real system or a simulated system), see
Figure 10.6.

Process

Sensor

v

y

Measured y

ySP

ue
PID

u
0

Auto

Manual

Controller

Tp

Figure 10.6: The Ziegler-Nichols’ closed loop method is executed on an estab-
lished control system.

The tuning procedure is as follows:

1. Bring the process to (or as close to as possible) the specified
operating point of the control system to ensure that the controller
during the tuning is “feeling” representative process dynamic6 and to
minimize the chance that variables during the tuning reach limits.
You can bring the process to the operating point by manually
adjusting the control variable, with the controller in manual mode,
until the process variable is approximately equal to the setpoint.

2. Turn the PID controller into a P controller by setting set Ti =∞
7

and Td = 0. Initially set gain Kp = 0. Close the control loop by
setting the controller in automatic mode.

3. Increase Kp until there are sustained oscillations in the signals in the
control system, e.g. in the process measurement, after an excitation
of the system. (The sustained oscillations corresponds to the system

6This may be important for nonlinear processes.
7 In some commercial controllers Ti = 0 is a code that is used to deactivate the I-term,

corresponding to Ti =∞.


