Standard PID Tuning Methods

(tbco 2/17/2012)

I. Cohen-Coon Method (Open-loop Test)

Step 1: Perform a step test to obtain the parameters of a FOPTD (first order plus time delay) model

- i. Make sure the process is at an initial steady state
- ii. Introduce a step change in the manipulated variable
- iii. Wait until the process settles at a new steady state

Figure 1. Step Test for Cohen-Coon Tuning.

Step 2: Calculate process parameters: t_1 , τ , τ_{del} , K, r as follows

$$t_1 = \frac{t_2 - (\ln(2))t_3}{1 - \ln(2)}$$
$$\tau = t_3 - t_1$$
$$\tau_{del} = t_1 - t_0$$
$$K = \frac{B}{A}$$
$$r = \frac{\tau_{del}}{\tau}$$

Step 3: Using the process parameters, use the prescribed values given by Cohen and Coon.

	K _c	$ au_{Int}$	$ au_{Der}$
Р	$\frac{1}{rK}\left(1+\frac{r}{3}\right)$		
PI	$\frac{1}{rK} \left(0.9 + \frac{r}{12} \right)$	$\tau_{del} \frac{30+3r}{9+20r}$	
PID	$\frac{1}{rK}\left(\frac{4}{3} + \frac{r}{4}\right)$	$\tau_{del} \frac{32+6r}{13+8r}$	$\tau_{del} \frac{4}{11+2r}$

Table 1. Cohen-Coon Tuning Rules

II. Ziegler-Nichols Method (Closed-loop P-ControlTest)

- Step 1: Determine the sign of process gain (e.g. open loop test as in Cohen-Coon).
- Step 2: Implement a proportional control and introducing a new set-point.
- Step 3: Increase proportional gain until sustained periodic oscillation.
- Step 4: Record ultimate gain and ultimate period: K_u and P_u .
- Step 5: Evaluate control parameters as prescribed by Ziegler and Nichols

8					
	K _c	$ au_{Int}$	$ au_{Der}$		
Р	$\frac{K_u}{2}$				
PI	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$			
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$		

Table 2. Ziegler Nichols Tuning Rules

III. Tyreus-Luyben Method (Closed-loop P-Control test)

Step 1-4: Same as steps 1 to 4 of Ziegler-Nichols method above Step 5: Evaluate control parameters as prescribed by Tyreus and Luyben

Tuble 2. Tyleus Duyben Tuning Rules for TTune The				
	K _c	$ au_{Int}$	$ au_{Der}$	
PI	$\frac{K_u}{3.2}$	2.2 <i>P</i> _u		
PID	$\frac{K_u}{2.2}$	$2.2P_u$	$\frac{P_u}{6.3}$	

Table 2. Tyreus-Luyben Tuning Rules for PI and PID

IV. Autotune Method (Closed-loop On-Off test)

Step 1: Let process settle to a steady state

Step 2: Move the setpoint to the current steady state

Step 3: Implement an on-off (relay) controller

If process gain is positive, $u = \begin{cases} u_0 + h \\ u_0 - h \end{cases}$	$if e \ge 0$ $if e < 0$
If process gain is negative, $u = \begin{cases} u_0 - h \\ u_0 + h \end{cases}$	$if e \ge 0$ $if e < 0$

Step 4: Let the process settle to a sustained periodic oscillation

Step 5: Evaluate ultimate gain using autotune formulas (P_u can be obtain from the plots)

$$K_u = \frac{4}{\pi} \frac{h}{a}$$

Step 6: Use either Ziegler-Nichols or Tyreus-Luyben prescribed tunings