MOSFETs

A little bit of history...

Operation of a transistor

V_{SG} > 0 n type operation

Positive gate bias attracts electrons into channel Channel now becomes more conductive

Operation of a transistor

Transistor turns on at high gate voltage Transistor current saturates at high drain bias

Start with a MOS capacitor

MIS Diode (MOS capacitor) - Ideal

Questions

 \checkmark What is the MOS capacitance? $Q_s(\psi_s)$

What are the local conditions during inversion? $\psi_{s,cr}$

How does the potential vary with position? $\psi(x)$

Add in the oxide: how does the voltage divide? $\psi_s(V_G)$, $\psi_{ox}(V_G)$

How much gate voltage do you need to invert the channel? V_{TH}

How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_s(V_G)$

Ideal MIS Diode n-type, $V_{appl}=0$

Ideal MIS Diode n-type, Vappl=0

$$\phi_{ms} \equiv \phi_m - \left(\chi + \frac{E_g}{2q} - \psi_B\right) = 0$$

Ideal MIS Diode p-type, $V_{appl}=0$

Ideal MIS Diode p-type, $V_{appl}=0$

$$\phi_{ms} \equiv \phi_m - \left(\chi + \frac{E_g}{2q} + \psi_B\right) = 0$$

Accumulation

Pulling in majority carriers at surface

But this increases the barrier for current flow!!

Depletion

n-TYPE

p - TYPE

Inversion

Need CB to dip below E_F.

Once below by ψ_B , minority carrier density trumps the intrinsic density. Once below by $2\psi_B$, it trumps the major carrier density (doping)!

Sometimes maths <u>can</u> help...

P-type semiconductor $V_{\alpha ppl} \neq 0$

Ideal MIS diode - p-type

$$n_p = n_i e^{-(E_i - E_F)/kT} = n_i e^{-(E_i - q_{\psi} - E_F)/kT} = n_{p0} e^{q_{\psi}/kT} = n_{p0} e^{\beta \psi}$$

CB moves towards E_F if $\psi > 0 \rightarrow n$ increases

$$p_{\rho} = p_{
ho 0} e^{-q_{\psi}/kT} = p_{
ho 0} e^{-\beta \psi}$$

VB moves away from E_F if $\psi > 0 \rightarrow p$ decreases

$$\beta \equiv \frac{q}{kT}$$

Ideal MIS diode - p-type

At the semiconductor surface, $\psi = \psi_s$

$$n_s = n_{p0}e^{\beta\psi_s}$$

$$p_s = p_{
ho 0} e^{-\beta \psi_s}$$

Surface carrier concentration

$$n_{s} = n_{p0}e^{\beta\psi_{s}}$$
 $p_{s} = p_{p0}e^{-\beta\psi_{s}}$

- $\psi_s < 0$ accumulation of holes
- $\psi_s = 0$ flat band
- $\psi_B > \psi_s > 0$ depletion of holes
- $\psi_s = \psi_B$ intrinsic concentration $n_s = p_s = n_i$
- ψ_s > ψ_B Inversion (more electrons than holes)

Want to find ψ , E-field, Capacitance

 Solve Poisson's equation to get E field, potential based on charge density distribution(one dimension)

$$\nabla \cdot \mathcal{E} = \rho / k \varepsilon_0 = \rho / \varepsilon_s = \frac{\alpha \mathcal{E}}{dx} \to 1 - D$$

$$\mathcal{E} = -\frac{d\psi}{dx}$$

$$\Rightarrow \frac{d^2 \psi}{dx^2} = -\rho / \varepsilon_s$$

$$\rho(x) = q(N_D^+ - N_A^- + p_0 - n_0)$$

• Away from the surface, $\rho = 0$

$$\Rightarrow N_D^+ - N_A^- = n_{p0} - p_{p0}$$

and

$$p_p - n_p = p_{p0}e^{-\beta\psi} - n_{p0}e^{\beta\psi}$$

$$\Rightarrow \frac{d^2 \psi}{dx^2} = -\frac{q}{\varepsilon_s} \left(p_{\rho 0} (e^{-\beta \psi} - 1) - n_{\rho 0} (e^{\beta \psi} - 1) \right)$$

Solve Poisson's equation:

$$\Rightarrow \frac{d^2 \psi}{dx^2} = -\frac{q}{\varepsilon_s} \left(p_{\rho 0} (e^{-\beta \psi} - 1) - n_{\rho 0} (e^{\beta \psi} - 1) \right)$$

$$xb/\psi b = 3$$

$$d^{2}\psi/dx^{2} = -d\mathcal{E}/dx$$

$$= (d\mathcal{E}/d\psi).(-d\psi/dx)$$

$$= \mathcal{E}d\mathcal{E}/d\psi$$

$$\mathcal{E}d\mathcal{E}/d\psi = -\frac{q}{\varepsilon_s} \left(p_{\rho 0} (e^{-\beta \psi} - 1) - n_{\rho 0} (e^{\beta \psi} - 1) \right)$$

Solve Poisson's equation:

Do the integral:

· LHS:

$$\int_{0}^{x} x dx = \frac{x^{2}}{2} \rightarrow x = \frac{d\psi}{dx}$$

· RHS:

$$\int_{0}^{x} e^{\pm \beta x} dx, \int_{0}^{x} dx$$

• Get expression for \mathcal{E} field $(d\psi/dx)$:

$$E_{\text{field}}^2 = \left(\frac{kT}{q}\right)^2 \left(\frac{qp_{\rho 0}\beta}{2\epsilon_s}\right) \left[\left(e^{-\beta\psi} + \beta\psi - 1\right) + \frac{n_{\rho 0}}{p_{\rho 0}}\left(e^{\beta\psi} - \beta\psi - 1\right)\right]$$

Define:

$$L_D \equiv \sqrt{\frac{kT\varepsilon_s}{p_{p0}q^2}} \equiv \sqrt{\frac{\varepsilon_s}{qp_{p0}\beta}}$$
 Debye Length

$$F\left(\beta\psi, \frac{n_{p0}}{p_{p0}}\right) = \left[\left(e^{-\beta\psi} + \beta\psi - 1\right) + \frac{n_{p0}}{p_{p0}}\left(e^{\beta\psi} - \beta\psi - 1\right)\right]^{\frac{1}{2}}$$

Then:

$$E_{field} = \pm \frac{\sqrt{2}kT}{qL_D} F\left(\beta \psi, \frac{n_{\rho 0}}{p_{\rho 0}}\right)$$

$$\varepsilon > 0$$
 $\psi > 0$

+ for ψ > 0 and - for ψ < 0

$$\psi \cdot 0$$

Use Gauss' Law to find surface charge per unit area

$$Q_{s} = -\varepsilon_{s} E_{s} = \mp \frac{\sqrt{2}kT}{qL_{D}} F\left(\beta \psi_{s}, \frac{n_{p0}}{p_{p0}}\right)$$

$$Q_{s} = \mp \frac{\sqrt{2}kT}{qL_{D}} \left[\left(e^{-\beta\psi_{s}} \right) + \left(\beta\psi_{s} - 1 \right) + \left(\frac{n_{\rho 0}}{\rho_{\rho 0}} \left(e^{\beta\psi} \right) - \beta\psi_{s} - 1 \right) \right]^{\frac{1}{2}}$$

ECE 663

Accumulation to depletion to strong Inversion

- For negative ψ , first term in F dominates exponential
- For small positive ψ , second term in F dominates $\sqrt{\psi}$
- As ψ gets larger, $\frac{n_{\rho 0}e^{\beta \psi}}{p_{\rho 0}} \rightarrow 1$ second exponential gets big

$$\psi_{B} = (kT/q)\ln(N_{A}/n_{i}) = (1/\beta)\ln(p_{p0}/\sqrt{p_{p0}}n_{p0})$$

$$(n_{p0}/p_{p0}) = e^{-2\beta \psi B}$$

$$\psi_{S} > 2\psi_{B}$$

Questions

- \checkmark What is the MOS capacitance? $Q_5(\psi_5)$
- \checkmark What are the local conditions during inversion? $\psi_{s,cr}$

How does the potential vary with position? $\psi(x)$

How much inversion charge is generated at the surface? $Q_{inv}(x, \psi_s)$

Add in the oxide: how does the voltage divide? $\psi_s(V_G)$, $\psi_{ox}(V_G)$

How much gate voltage do you need to invert the channel? V_{TH}

How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_s(V_G)$

Charges, fields, and potentials

- · Charge on metal = induced surface charge in semiconductor
- No charge/current in insulator (ideal)

$$Q_M = Q_n + qN_AW = Q_S$$

Charges, fields, and potentials

Depletion Region

Electric Field

Electrostatic Potential

$$E_{\text{field}}^{2} = \left(\frac{kT}{q}\right)^{2} \left(\frac{qp_{p0}\beta}{2\epsilon_{s}}\right) \left[\left(e^{-\beta\psi} + \beta\psi - 1\right) + \frac{n_{p0}}{p_{p0}}\left(e^{-\beta\psi} - \beta\psi - 1\right)\right]$$

Depletion Region

$$\psi = \psi_s (1-x/W)^2$$

$$W_{max} = \sqrt{2\varepsilon_s (2\psi_B)/qN_A}$$

$$\psi_B = (kT/q)ln(N_A/n_i)$$
ECE 663

Questions

- \checkmark What is the MOS capacitance? $Q_5(\psi_5)$
- \checkmark What are the local conditions during inversion? $\psi_{s,cr}$
- \checkmark How does the potential vary with position? $\psi(x)$

How much inversion charge is generated at the surface? $Q_{inv}(x, \psi_s)$

Add in the oxide: how does the voltage divide? $\psi_{s}(V_{G})$, $\psi_{ox}(V_{G})$

How much gate voltage do you need to invert the channel? V_{TH}

How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_s(V_G)$

Couldn't we just solve this exactly?

Exact Solution

$$U = \beta \psi$$

$$U_S = \beta \psi_S$$

$$U_B = \beta \psi_B$$

$$d\psi/dx = -(\sqrt{2kT/qL_D})F(\psi_B, n_{p0}/p_{p0})$$

$$\int_{U_c}^{U} dU/F(U) = \pm x/L_D$$

$$F(U) = [e^{U}B(e^{-U}-1+U)-e^{-U}B(e^{U}-1-U)]^{1/2}$$

Exact Solution

$$\rho = qn_i[e^{U_B}(e^{-U}-1) - e^{-U_B}(e^{U}-1)]$$

$$\int_{U}^{U_{S}} dU'/F(U',U_{B}) = \pm x/L_{D}$$

$$F(U,U_B) = [e^{U_B}(e^{-U}-1+U) + e^{-U_B}(e^{U}-1-U)]^{1/2}$$

Exact Solution

$$N_A = 1.67 \times 10^{15}$$

Questions

- \checkmark What is the MOS capacitance? $Q_5(\psi_5)$
- \checkmark What are the local conditions during inversion? $\psi_{s,cr}$
- \checkmark How does the potential vary with position? $\psi(x)$
- ✓ How much inversion charge is generated at the surface? $Q_{inv}(x, \psi_s)$

Add in the oxide: how does the voltage divide? $\psi_s(V_G)$, $\psi_{ox}(V_G)$

How much gate voltage do you need to invert the channel? V_{TH}

How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_s(V_G)$

Threshold Voltage for Strong Inversion

* Total voltage across MOS structure= voltage across dielectric plus ψ_{s}

$$V_T(strong_inversion) = V_i + \psi_S = \frac{Q_S}{C_i} + 2\psi_B$$

$$Q_{S}(SI) = qN_{A}W_{\text{max}} = qN_{A}\sqrt{\frac{2\epsilon_{s}\psi_{s}(inv)}{qN_{A}}} = \sqrt{2\epsilon_{s}qN_{A}(2\psi_{B})}$$

$$\Rightarrow V_T = \frac{\sqrt{2\varepsilon_s q N_A(2\psi_B)}}{C_i} + 2\psi_B$$

Notice Boundary Condition!!

$$\varepsilon_{ox}V_i/t_{ox} = \varepsilon_s\psi_s/(W/2)$$
 Before Inversion

After inversion there is a discontinuity in D due to surface Q_{inv}

$$V_{ox}$$
 (at threshold) = $\varepsilon_s(2\psi_B)/(W_{max}/2)C_i$ =

$$=\frac{\sqrt{2\epsilon_s q N_A(2\psi_B)}}{C_i}$$

Local Potential vs Gate voltage

$$V_{\text{G}} = V_{\text{fb}} + \psi_{\text{s}} + (\kappa_{\text{s}}t_{\text{ox}}/\kappa_{\text{ox}})\sqrt{(2k\text{T}N_{\text{A}}/\epsilon_{\text{0}}\kappa_{\text{s}})[\beta\psi_{\text{s}} + e^{\beta(\psi_{\text{S}}-2\psi_{\text{B}})}]^{1/2}}$$

Initially, all voltage drops across channel (blue curve). Above threshold, channel potential stays pinned to $2\psi_B$, varying only logarithmically, so that most of the gate voltage drops across the oxide (red curve).

Look at Effective charge width

Initially, a fast increasing channel potential drops across increasing depletion width

Eventually, a constant potential drops across a decreasing inversion layer width, so field keeps increasing and thus matches increasing field in oxide

Questions

- \checkmark What is the MOS capacitance? $Q_5(\psi_5)$
- \checkmark What are the local conditions during inversion? $\psi_{s,cr}$
- \checkmark How does the potential vary with position? $\psi(x)$
- ✓ How much inversion charge is generated at the surface? $Q_{inv}(x, \psi_s)$
- \checkmark Add in the oxide: how does the voltage divide? $\psi_s(V_G)$, $\psi_{ox}(V_G)$
- ✓ How much gate voltage do you need to invert the channel? V_{TH}

How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_5(V_G)$

Charge vs Local Potential

$$Q_{s} \approx \sqrt{(2\epsilon_{0}\kappa_{s}kTN_{A})[\beta\psi_{s} + e^{\beta(\psi_{s}-2\psi_{B})}]^{1/2}}$$

Beyond threshold, all charge goes to inversion layer

How do we get the curvatures?

 $[\exp(-\beta x) + n_r \cdot \exp(\beta x)]^{1/2}$ with $n_r = 1$.

$$n_r = 10^{-5}$$
.

Add other terms and keep Leading term

$$(x^2 + n_r \cdot [x^2])^{1/2}$$

$$([\exp(-\beta x) + \beta x - 1) + n_r \cdot [\exp(\beta x) - \beta x - 1])^{1/2}$$

Inversion Charge vs Gate voltage

 $Q\sim e^{\beta(\psi_S^{-2}\psi_B)},\,\psi_s^{-}\,2\psi_B\sim log(V_G^{-}V_T^{-})$ Exponent of a logarithm gives a linear variation of Q_{inv} with V_G^{-}

$$Q_{inv} = -C_{ox}(V_G - V_T)$$

Questions

- ✓ What is the MOS capacitance? $Q_s(\psi_s)$
- \checkmark What are the local conditions during inversion? $\psi_{s,cr}$
- \checkmark How does the potential vary with position? $\psi(x)$
- ✓ How much inversion charge is generated at the surface? $Q_{inv}(x, \psi_s)$
- \checkmark Add in the oxide: how does the voltage divide? $\psi_s(V_G)$, $\psi_{ox}(V_G)$
- ✓ How much gate voltage do you need to invert the channel? V_{TH}
- \checkmark How much inversion charge is generated by the gate? $Q_{inv}(V_G)$

What's the overall C-V of the MOSFET? $Q_s(V_G)$

Capacitance

$$C_{D} = \frac{\partial Q_{S}}{\partial \psi} = \frac{\varepsilon_{S}}{\sqrt{2}L_{D}} \frac{\left[1 - e^{-\beta\psi_{s}} + \left(\frac{n_{\rho 0}}{\rho_{\rho 0}}\right)\left(e^{-\beta\psi_{s}} - 1\right)\right]}{F\left(\beta\psi_{S}, \frac{n_{\rho 0}}{\rho_{\rho 0}}\right)}$$

For ψ_s =0 (Flat Band):

Expand exponentials....
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$C_D(flat_band) = \frac{\varepsilon_S}{L_D}$$

Capacitance of whole structure

Two capacitors in series:

$$\frac{1}{C} = \frac{1}{C_i} + \frac{1}{C_D}$$

OR

$$C = \frac{C_i C_D}{C_i + C_D}$$

$$C_i \equiv \frac{\varepsilon_i}{d}$$

Capacitance vs Voltage

Flat Band Capacitance

- Negative voltage = accumulation $C\sim C_i$
- Zero voltage Flat Band

$$V = 0 \Rightarrow \psi = 0 \Rightarrow C = C_{FB}$$

$$\frac{1}{C_{FB}} = \frac{1}{C_i} + \frac{1}{C_D} = \frac{1}{\frac{\varepsilon_i}{d}} + \frac{1}{\frac{\varepsilon_s}{d}} = \frac{\varepsilon_s d + \varepsilon_i L_D}{\varepsilon_i \varepsilon_s} = \frac{d + \frac{\varepsilon_i}{\varepsilon_s} L_D}{\varepsilon_i}$$

$$\Rightarrow C_{FB} = \frac{\varepsilon_i}{d + \frac{\varepsilon_i}{\varepsilon_s} L_D}$$

CV

- As voltage is increased, C goes through minimum (weak inversion) where $d\psi/dQ$ is fairly flat
- C will increase with onset of strong inversion
- · Capacitance is an AC measurement
- Only increases when AC period long wrt minority carrier lifetime
- At "high" frequency, carriers can't keep up don't see increased capacitance with voltage
- For Si MOS, "high" frequency = 10-100 Hz

CV Curves - Ideal MOS Capacitor

MOScap vs MOSFET

MOScap vs MOSFET

Minority carriers generated by RG, over minority carrier lifetime $\sim 100 \mu s$

So C_{inv} can be $<< C_{ox}$ if fast gate switching (\sim GHz)

Majority carriers pulled in from contacts (fast !!)

$$C_{\text{inv}} = C_{\text{ox}}$$

Example Metal-SiO₂-Si

- $N_A = 10^{17}/cm^3$
- At room temp kT/q = 0.026V
- $n_i = 9.65 \times 10^9 / cm^3$
- $\varepsilon_s = 11.9 \times 1.85 \times 10^{-14} \text{ F/cm}$

$$W_{\text{max}} = \sqrt{\frac{4\varepsilon_s kT \ln\left(\frac{N_A}{n_i}\right)}{q^2 N_A}} = \sqrt{\frac{11.9 \times 8.85 \times 10^{-14} \times 0.026 \ln\left(10^{17}/9.65 \times 10^9\right)}{1.6 \times 10^{-19} \times 10^{17}}}$$

$$W_{\rm max} = 10^{-5} \, cm = 0.1 \mu m$$

Example Metal-SiO₂-Si

- d=50 nm thick oxide=10⁻⁵ cm
- $\varepsilon_i = 3.9 \times 8.85 \times 10^{-14} \text{ F/cm}$

$$C_i = \frac{\varepsilon_i}{d} = \frac{3.9 \times 8.85 \times 10^{-14}}{10^{-5}} = 6.9 \times 10^{-7} \, \text{F/cm}^2$$

$$\psi_s(inv) = 2\psi_B = \frac{2kT}{q} \ln\left(\frac{N_A}{n_i}\right) = 2x0.026x \ln\left(\frac{10^{17}}{9.65x10^9}\right) = 0.84Volts$$

$$C'_{\min} = \frac{\varepsilon_i}{d + \frac{\varepsilon_i}{\varepsilon} W_{\max}} = \frac{3.9 \times 8.85 \times 10^{-14}}{5 \times 10^{-7} + (3.9/11.9)10^{-5}} = 9.1 \times 10^{-8} \, F/cm^2$$

$$\frac{C_{\min}^{'}}{C_{i}}=0.13$$

$$V_{TH} = \frac{qN_AW_{\text{max}}}{C_i} + 2\psi_B = \frac{1.6x10^{-19}x10^{17}x10^{-5}}{6.9x10^{-7}} + \psi_s(inv) = 0.23 + 0.84 = 1.07Volts$$

Real MIS Diode: Metal(poly)-Si-SiO2 MOS

- Work functions of gate and semiconductor are NOT the same
- · Oxides are not perfect
 - Trapped, interface, mobile charges
 - Tunneling
- All of these will effect the CV characteristic and threshold voltage

Band bending due to work function difference

Work Function Difference

- $q\phi_s$ =semiconductor work function = difference between vacuum and Fermi level
- $q\phi_m$ =metal work function
- $q\phi_{ms}=(q\phi_{m}-q\phi_{s})$
- For AI, $q\phi_m = 4.1 \text{ eV}$
- n polysilicon $q\phi_s$ =4.05 eV
- p^+ polysilicon $q\phi_s=5.05$ eV
- $q\varphi_{ms}$ varies over a wide range depending on doping

SiO₂-Si Interface Charges

Standard nomenclature for Oxide charges:

Q_M=Mobile charges (Na+/K+) - can cause unstable threshold shifts - cleanliness has eliminated this issue

Q_{OT}=Oxide trapped charge - Can be anywhere in the oxide layer. Caused by broken Si-O bonds - caused by radiation damage e.g. alpha particles, plasma processes, hot carriers, EPROM

- Q_F= Fixed oxide charge positive charge layer near (~2mm) Caused by incomplete oxidation of Si atoms(dangling bonds) Does not change with applied voltage
- Q_{IT}=Interface trapped charge. Similar in origin to Q_F but at interface. Can be pos, neg, or neutral. Traps e⁻ and h during device operation. Density of Q_{IT} and Q_F usually correlated-similar mechanisms. Cure is H anneal at the end of the process.

Oxide charges measured with C-V methods

Effect of Fixed Oxide Charges

Surface Recombination

Lattice periodicity broken at surface/interface - mid-gap E levels Carriers generated-recombined per unit area

Interface Trapped Charge - QIT

- Surface states R-G centers caused by disruption of lattice periodicity at surface
- Trap levels distributed in band gap, with Fermi-type distributed:

$$\frac{N_D^+}{N_D} = \frac{1}{1 + g_D e^{-(E_F - E_D)/kT}}$$

- Ionization and polarity will depend on applied voltage (above or below Fermi level
- Frequency dependent capacitance due to surface recombination lifetime compared with measurement frequency
- Effect is to distort CV curve depending on frequency
- Can be passivated w/H anneal 10^{10} /cm² in Si/SiO₂ system

Effect of Interface trapped charge on C-V curve

Non-Ideal MOS capacitor C-V curves

- Work function difference and oxide charges shift CV curve in voltage from ideal case
- CV shift changes threshold voltage
- Mobile ionic charges can change threshold voltage as a function of time - reliability problems
- Interface Trapped Charge distorts CV curve frequency dependent capacitance
- Interface state density can be reduced by H annealing in Si-SiO₂
- Other gate insulator materials tend to have much higher interface state densities

All of the above....

 For the three types of oxide charges the CV curve is shifted by the voltage on the capacitor Q/C

$$V_{FB-oxide_charge} = \frac{-1}{C_i} \left[\frac{1}{d} \int_{0}^{d} x \rho(x) dx \right]$$

 When work function differences and oxide charges are present, the flat band voltage shift is:

$$V_{FB} = \phi_{ms} - \frac{\left(Q_f - Q_m - Q_{ot}\right)}{C_i}$$

Some important equations in the inversion regime (Depth direction)

$$V_{T} = \phi_{ms} + 2\psi_{B} + \psi_{ox}$$

$$\psi_{ox} = Q_{s}/C_{ox}$$

$$Q_{s} = qN_{A}W_{dm}$$

$$W_{dm} = \sqrt{[2\epsilon_{S}(2\psi_{B})/qN_{A}]}$$

$$V_T = \phi_{ms} + 2\psi_B + (\sqrt{4\epsilon_S \psi_B q N_A} - Q_f + Q_m + Q_{ot})/C_{ox}$$

$$Q_{inv} = C_{ox}(V_G - V_T)$$