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MOSFETs
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A little bit of history..
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Channel Drain

Insulator

Gate

Operation of a transistor

VSG > 0
n type operation

Positive gate bias attracts electrons into channel
Channel now becomes more conductive

More
electrons

Source

VSD

VSG



Substrate

Channel Drain

Insulator

Gate

Operation of a transistor

Transistor turns on at high gate voltage
Transistor current saturates at high drain bias

Source

VSD

VSG
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Start with a MOS capacitor
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MIS Diode (MOS capacitor) – Ideal 



W

Questions

What is the MOS capacitance? QS(yS)

What are the local conditions during inversion? yS,cr

How does the potential vary with position? y(x) 

How much inversion charge is generated at the surface? Qinv(x,yS)

Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

How much gate voltage do you need to invert the channel?  VTH

How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)
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EC

EF

EV

Ei

Ideal MIS Diode n-type, Vappl=0

Assume Flat-band 
at equilibrium

qfS
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Ideal MIS Diode p-type, Vappl=0
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Ideal MIS Diode p-type, Vappl=0
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Accumulation

Pulling in majority carriers at surface
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But this increases the barrier 
for current flow !!

n+ p      n+
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Depletion
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Need CB to dip below EF. 
Once below by yB, minority carrier density trumps the intrinsic density. 
Once below by 2yB, it trumps the major carrier density (doping) !

Inversion

yB
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Sometimes maths can help…
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P-type semiconductor Vappl0

Convention for p-type: y positive if bands bend down
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Ideal MIS diode – p-type
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Ideal MIS diode – p-type

At the semiconductor surface, y = ys

senn ps

y
 0

sepp ps

y
 0



• ys < 0 - accumulation of holes

• ys  =0 - flat band

• yB>ys >0 – depletion of holes

• ys =yB - intrinsic concentration ns=ps=ni 

• ys > yB – Inversion (more electrons than holes)

ECE 663

Surface carrier concentration

senn ps
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Want to find y, E-field, Capacitance 

• Solve Poisson’s equation to get E field, potential based on 
charge density distribution(one dimension)
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• Away from the surface,  = 0

• and
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Solve Poisson’s equation:

 )1()1( 002

2





y

 yy enep
q

dx

d
pp

s

E = -dy/dx

d2y/dx2 = -dE/dx

= (dE/dy).(-dy/dx)

= EdE/dy

 )1()1( 002

2





y

 yy enep
q

dx

d
pp

s

EdE/dy



ECE 663

• Do the integral:

• LHS:

• RHS:

• Get expression for E field (dy/dx):
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Use Gauss’ Law to find 
surface charge per unit 
area
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Accumulation to depletion to strong Inversion

• For negative y, first term in F dominates – exponential

• For small positive y, second term in F dominates - y

• As y gets larger,  second exponential gets big1
0

0
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yB = (kT/q)ln(NA/ni) = (1/)ln(pp0/√pp0np0) 

(np0/pp0) = e-2yB 

yS > 2yB



Questions

 What is the MOS capacitance? QS(yS)

 What are the local conditions during inversion? yS,cr

How does the potential vary with position? y(x) 

How much inversion charge is generated at the surface? Qinv(x,yS)

Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

How much gate voltage do you need to invert the channel?  VTH

How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)
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Charges, fields, and potentials

• Charge on metal = induced surface charge in semiconductor

• No charge/current in insulator (ideal)

metal insul semiconductor

depletion

inversion

SAnM QWqNQQ 
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Electric Field Electrostatic Potential

Charges, fields, and potentials



ECE 663

Electric Field Electrostatic Potential

Depletion Region
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Electric Field Electrostatic Potential

y = ys(1-x/W)2

Wmax = 2s(2yB)/qNA

yB = (kT/q)ln(NA/ni)

Depletion Region



Questions

 What is the MOS capacitance? QS(yS)

 What are the local conditions during inversion? yS,cr

 How does the potential vary with position? y(x) 

How much inversion charge is generated at the surface? Qinv(x,yS)

Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

How much gate voltage do you need to invert the channel?  VTH

How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)



Couldn’t we just solve
this exactly? 



U = y

US = yS

UB = yB

Exact Solution

dy/dx = -(2kT/qLD)F(yB,np0/pp0)

dU/F(U) =  x/LD



U

US

F(U) = [eUB(e-U-1+U)-e-UB (eU-1-U)]1/2



Exact Solution

dU’/F(U’,UB) =  x/LD



U

US

F(U,UB) = [eUB(e-U-1+U) + e-UB (eU-1-U)]1/2

 = qni[eUB(e-U-1) – e-UB(eU-1)]



Exact Solution

NA = 1.67 x 1015

Qinv ~ 1/(x+x0)a

x0 ~ LD . factor



Questions

 What is the MOS capacitance? QS(yS)

 What are the local conditions during inversion? yS,cr

 How does the potential vary with position? y(x) 

 How much inversion charge is generated at the surface? Qinv(x,yS)

Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

How much gate voltage do you need to invert the channel? VTH

How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)
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Threshold Voltage for Strong Inversion

• Total voltage across MOS structure= voltage across 
dielectric plus ys
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oxVi/tox = sys/(W/2) Before Inversion

After inversion there is a discontinuity in D due to surface Qinv 

Vox (at threshold) = s(2yB)/(Wmax/2)Ci = 

ECE 663

Notice Boundary Condition !!
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Local Potential vs Gate voltage 

VG = Vfb + ys + (kstox/kox)√(2kTNA/0ks)[ys + eys-2yB)]1/2

Initially, all voltage drops across channel (blue curve). Above threshold, 
channel potential stays pinned to 2yB, varying only logarithmically, so that 
most of the gate voltage drops across the oxide (red curve).

yox
ys



Look at Effective charge width

Initially, a fast increasing channel potential drops across 
increasing depletion width

Eventually, a constant potential drops across a decreasing 
inversion layer width, so field keeps increasing and thus 
matches increasing field in oxide 

~Wdm/2

~tinv



Questions

 What is the MOS capacitance? QS(yS)

 What are the local conditions during inversion? yS,cr

 How does the potential vary with position? y(x) 

 How much inversion charge is generated at the surface? Qinv(x,yS)

 Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

 How much gate voltage do you need to invert the channel?  VTH

How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)



Charge vs Local Potential 

Qs ≈ √(20kskTNA)[ys + eys-2yB)]1/2

Beyond threshold, all charge goes to inversion layer



How do we get the curvatures?

EXACT
Add other terms and keep
Leading term



Inversion Charge vs Gate voltage 
Q ~ eys-2yB), ys

- 2yB ~ log(VG-VT)
Exponent of a logarithm gives a linear variation of Qinv with VG

Qinv = -Cox(VG-VT)

Why Cox? 



Questions

 What is the MOS capacitance? QS(yS)

 What are the local conditions during inversion? yS,cr

 How does the potential vary with position? y(x) 

 How much inversion charge is generated at the surface? Qinv(x,yS)

 Add in the oxide: how does the voltage divide? yS(VG), yox(VG)

 How much gate voltage do you need to invert the channel?  VTH

 How much inversion charge is generated by the gate? Qinv(VG)

What’s the overall C-V of the MOSFET? QS(VG)
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Capacitance
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Capacitance of whole structure

• Two capacitors in series:

Ci - insulator

CD - Depletion
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Capacitance vs Voltage
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Flat Band Capacitance

• Negative voltage = accumulation – C~Ci

• Zero voltage – Flat Band
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CV

• As voltage is increased, C goes through minimum 
(weak inversion) where dy/dQ is fairly flat

• C will increase with onset of strong inversion

• Capacitance is an AC measurement

• Only increases when AC period long wrt minority 
carrier lifetime

• At “high” frequency, carriers can’t keep up – don’t 
see increased capacitance with voltage

• For Si MOS, “high” frequency = 10-100 Hz 
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CV Curves – Ideal MOS Capacitor
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MOScap vs MOSFET
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Substrate

Drain

Insulator
Gate

Source Channel

Substrate

Insulator
Gate

Channel

Minority carriers generated by
RG, over minority carrier lifetime
~ 100ms

So Cinv can be << Cox if fast gate
switching (~ GHz)  

Majority carriers pulled in
from contacts (fast !!)

Cinv = Cox

MOScap vs MOSFET
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Example Metal-SiO2-Si

• NA = 1017/cm3

• At room temp kT/q = 0.026V

• ni = 9.65x109/cm3

• s = 11.9x1.85x10-14 F/cm
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Example Metal-SiO2-Si

• d=50 nm thick oxide=10-5 cm

• i=3.9x8.85x10-14 F/cm
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Real MIS Diode: Metal(poly)-Si-SiO2 MOS 

• Work functions of gate and semiconductor are 
NOT the same

• Oxides are not perfect
– Trapped, interface, mobile charges

– Tunneling

• All of these will effect the CV characteristic and 
threshold voltage
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Band bending due to work function difference

msFBV f
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Work Function Difference

• qfs=semiconductor work function = 
difference between vacuum and Fermi level

• qfm=metal work function

• qfms=(qfm- qfs)

• For Al, qfm=4.1 eV

• n+ polysilicon qfs=4.05 eV

• p+ polysilicon qfs=5.05 eV

• qfms varies over a wide range depending on 
doping
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SiO2-Si Interface Charges
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Standard nomenclature for Oxide charges:

QM=Mobile charges (Na+/K+) – can cause
unstable threshold shifts – cleanliness
has eliminated this issue

QOT=Oxide trapped charge – Can be anywhere
in the oxide layer. Caused by broken
Si-O bonds – caused by radiation damage
e.g. alpha particles, plasma processes,
hot carriers, EPROM
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QF= Fixed oxide charge – positive charge layer
near (~2mm) Caused by incomplete
oxidation of Si atoms(dangling bonds)
Does not change with applied voltage

QIT=Interface trapped charge. Similar in origin
to QF but at interface.  Can be pos, neg,
or neutral.  Traps e- and h during device
operation.  Density of QIT and QF usually
correlated-similar mechanisms.  Cure
is H anneal at the end of the process.

Oxide charges measured with C-V methods
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Effect of Fixed Oxide Charges
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Surface Recombination

Lattice periodicity broken at surface/interface – mid-gap E levels
Carriers generated-recombined per unit area
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Interface Trapped Charge - QIT

• Surface states – R-G centers caused by disruption of lattice 
periodicity at surface

• Trap levels distributed in band gap, with Fermi-type distributed:

• Ionization and polarity will depend on applied voltage (above or 
below Fermi level

• Frequency dependent capacitance due to surface recombination 
lifetime compared with measurement frequency

• Effect is to distort CV curve depending on frequency

• Can be passivated w/H anneal – 1010/cm2 in Si/SiO2 system
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Effect of Interface trapped charge on C-V curve
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a – ideal
b – lateral shift – Q oxide, fms

c – distorted by QIT
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Non-Ideal MOS capacitor C-V curves

• Work function difference and oxide charges shift CV curve in 
voltage from ideal case

• CV shift changes threshold voltage

• Mobile ionic charges can change threshold voltage as a function of 
time – reliability problems

• Interface Trapped Charge distorts CV curve – frequency 
dependent capacitance

• Interface state density can be reduced by H annealing in Si-Si02

• Other gate insulator materials tend to have much higher 
interface state densities
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All of the above….

• For the three types of oxide charges the CV curve is shifted 
by the voltage on the capacitor Q/C

• When work function differences and oxide charges are 
present, the flat band voltage shift is:
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Some important equations in the 
inversion regime (Depth direction)

VT = fms + 2yB + yox

Wdm = [2S(2yB)/qNA]

Qinv = Cox(VG - VT)

yox = Qs/Cox

Qs = qNAWdm

VT = fms + 2yB + ([4SyBqNA] - Qf + Qm + Qot)/Cox

Substrate

Channel Drain

Insulator

Gate

Source

x


