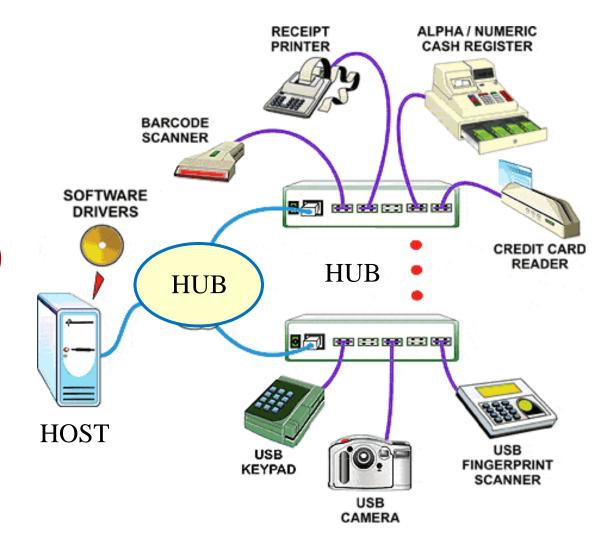


Universal Serial Bus

- Teknik Antarmuka Komputer -

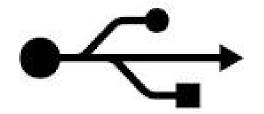
Eka Maulana, ST, MT, M.Eng.


Electrical Engineering Department

Brawijaya University

USB Overview

- HOST
- HUB
- DEVICEs(127 max)

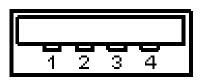

USB Progress

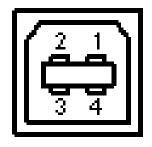
USB 1.0

Low Speed (1.5 Mbps) Full Speed (12 Mbps)

- USB 2.0
 High Speed (480 Mbps)
- USB 3.0
 Super Speed (5 Gbps)

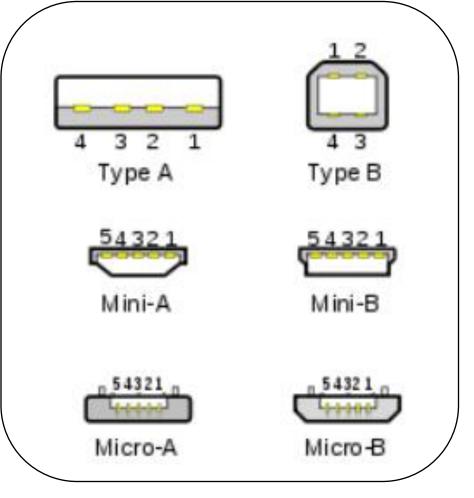
Spesifikasi


- Sinyal: 5 volt DC
- max. voltage: 5 V (<u>+</u> 5%)
- max. current: 500-900 mA
- Cable: 4 wires (8 wires for superspeed)
- Protocol: Serial
- Connector: Unique
- Designer: Compaq, DEC, IBM, Intel, Microsoft, NEC and Nortel



Hardware Specification

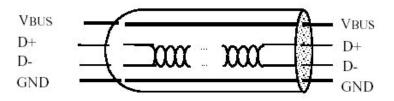
(PIN OUT)



A type (to Host)

B type (to Device)

Pin	Name	Cable color	Description			
1	VBUS	Red	+5 V			
2	D-	White	Data -			
3	D+	Green	Data +			
4	GND	Black	Ground			



Connector

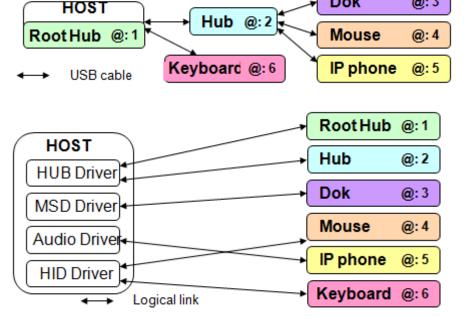
D+/D- Twisted Pair

Host based token polling

- Data from host-to-function and function-to-host
- Host handles most of the protocol complexity
- Peripheral design is simple and low-cost

Robustness

- Handshake to acknowledge data transfer and flow control
- Very low raw physical bit error rate (< 10 ⁻¹⁰)
- CRC protection plus hardware retry option
- Data toggle Sequence bits


Bounded transfer characteristics

- Data transfer bandwidth and latency prenegociated
- Flow control for peripheral buffer management
- No asynchronous message/interrupt from the peripheral

USB Topology

- A unique device address is assigned to each USB device
- Physical tiered start network:

Logical network:

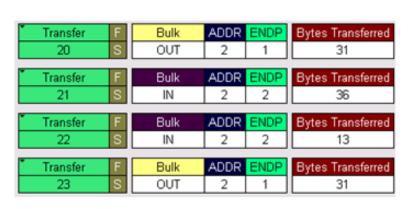
Dok

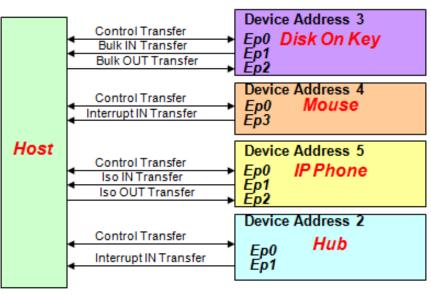
@:3

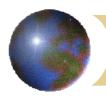
- Each device sees all traffic generated by the host
- A device does not see data sent by another peripheral

USB Transfer

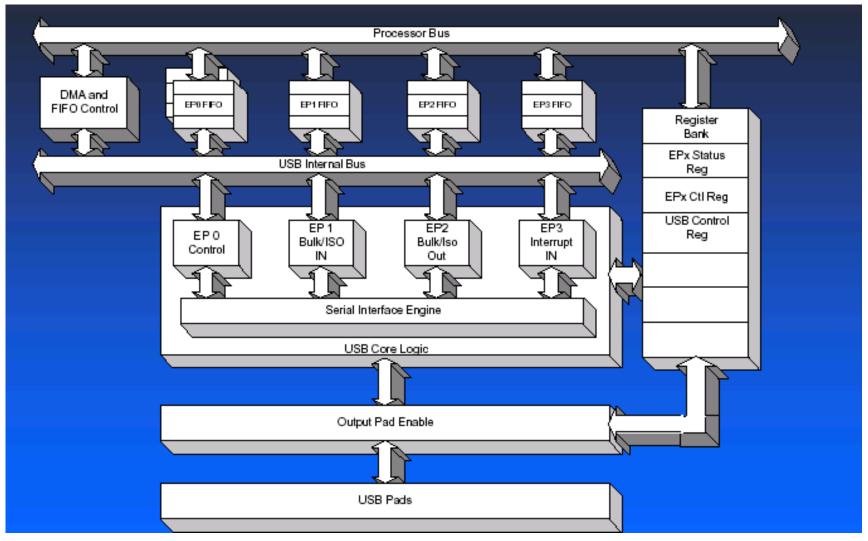
- A device has several endpoints
- Each endpoint is assigned to a logical pipe with the host
- Each pipe is characterized by:
 - Device address
 - Endpoint number
 - Transfer type
- Transfer type:

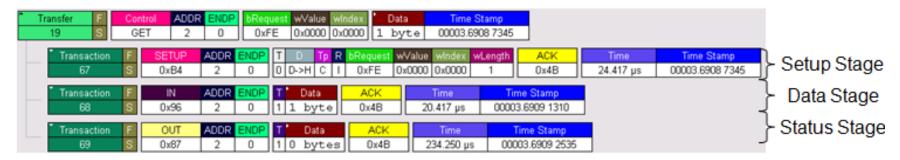

Type	Direction	Packets per frame	Max Packet Size		
Control	Bidir	Several	64 Bytes		
Bulk	Unidir	Several	64 Bytes		
Isochronous	Unidir	One	1024 Bytes		
Interrupt	Unidir	One max	64 Bytes		

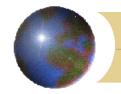

- Control: configuration/command/status type communication
- Bulk: large amounts of data at highly variable times
- Isochronous: constant-rate, error tolerant transfers
- Interrupt: send or receive data infrequently but with bounded service periods


USB Pipe

- Device address is affected by the host
- Endpoint configuration depends on the device implementation
- Time multiplexing of transfer is under host control



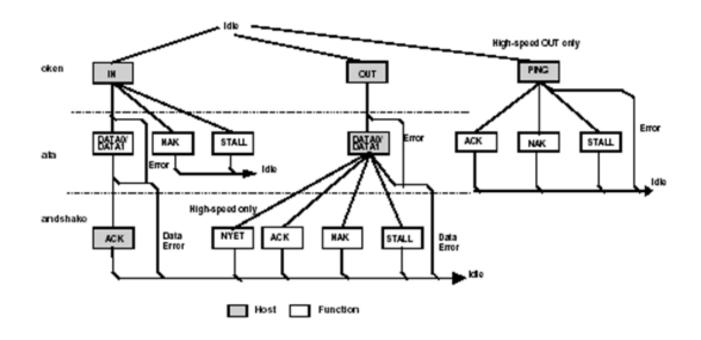

USB Controller


USB transactions

- A transfer is composed of one or several transactions
- Example of control transfer (several transactions)

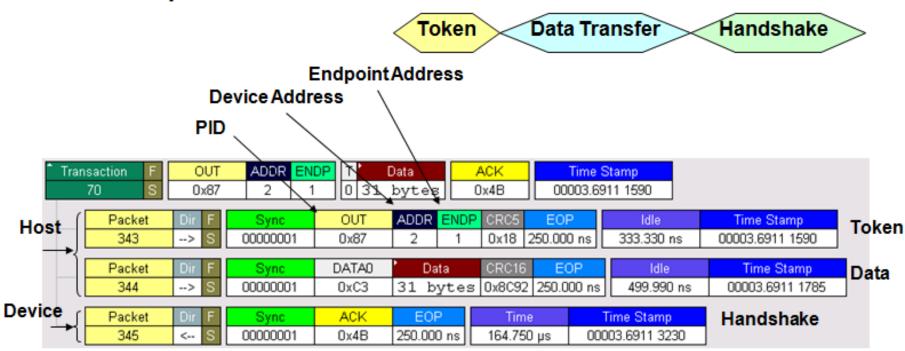
Example of bulk transfer (one transaction)

Transfer	F	В	ulk	ADDR	ENDP	Bytes Transferred		rred	Time Stamp					
20	S	0	UT	2	1][3	1		00003.6911 1590				
Transa	ction	F	Ol	JT	ADDR	ENDP	Т	,	Data		ACK	Time	9	Time Stamp
70)	S	0x	87	2	1	0	31	byte	s	0x4B	192.083	βµs	00003.6911 1590


USB Transactions (1)

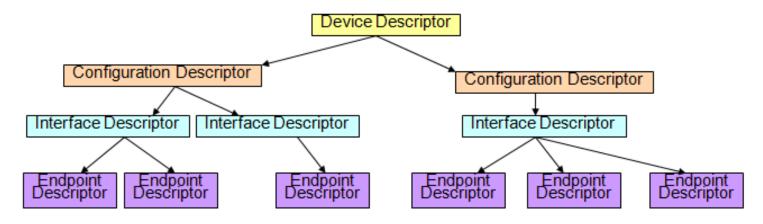
- A transaction is made of 3 packets
 - Token: device address, endpoint number, transfer type
 - Data: data to be sent
 - Handshake: acknowledge

Token Data Transfer


Handshake

Example of bulk transaction:

USB Transactions (2)


Example of bulk OUT transaction:

Device descriptor

- The USB Host stacks uses the descriptor retrieved from the device to find the corresponding driver.
- Windows looks for a matching Vendor ID/Product ID in its .inf library
- If not found, it will search for a matching class driver
- If not found then it will request the user to insert a CD to install the corresponding driver

USB class drivers

- Building on top of the USB specifications, there are Device Class Specifications from the Device Working Group
- Matching device class requirements allow use of standard host class drivers provided by Windows or Linux
- Each class driver specifies the endpoint configurations required
- Existing class drivers:
 - Audio class (speakers, ...)
 - HID (keyboard, mouse, ...)
 - Mass Storage (disk on key)
 - Printer class
 - Smart Card CCID
 - Communication Data Class

tugas

- CRC (penjelasan, jenis, prosedur)
- Data toogle squence (NRZI)