Inspiring the World

Eka Maulana, ST., MT., M.Eng

Category : Hardware

(22 / Oct / 2017), IEEE (Institute for Electrical and Electronics Engineers) UB Student Branch successfully held Dissemination and Workshop of Internet of Things . In collaboration with Power Systems Engineering and Energy Management Research Group (PSeeMRG), the event entitled “Pervasive Innovation Begins Here” invites 2 keynote speakers; M. Aziz Muslim, ST, MT, Ph.D and Eka Maulana, ST, MT, M.Eng., MIAENG, MIEEE.

In his speech as well as his keynote speech, Aziz Muslim Ph.D who is also chairman of the UB Electrical Engineering Department, said that this is the event of IEEE UB Student Branch after IEEE Colloquium. In the future, this event will held a series of event ends with Idea Exhibition from the participants.

“Our hope is that electrical engineering students can have innovation and technological creations related to the internet of things.”He said. Read More…

Dalam menjalankan aktivitasnya, dokter gigi membutuhkan suatu wadah yang dapat menampung alat-alat kedokteran gigi yang jumlahnya terbilang cukup banyak. Selama ini untuk membawa peralatan yang banyak dan beragam tersebut, dokter gigi menggunakan toolbox yang biasa digunakan untuk menyimpan alat-alat tukang atau bengkel. Penggunaan produk yang tidak sesuai dengan fungsinya membuat kondisi peralatan yang dibawa saling campur dan tidak rapi. Bahkan benturan yang sering terjadi antar barang menyebabkan kerusakan pada peralatan di dalamnya.

Hal tersebut melatarbelakangi lima mahasiswa Universitas Brawijaya (UB) untuk berinovasi dalam Program Kreativitas Mahasiswa-Karsa Cipta (PKM-KC), yaitu Donny Ramadhan (FKG 2014), Asrori Arsyad (FT 2013), Dandhi Tri Laksono (FT 2013), Faica Amalia Sari (FKG 2014), dan Hilda Octaviani (FKG 2014) menciptakan Dentmox atau Dental Magic Box.

Di bawah bimbingan dosen Eka Maulana, ST., MT., M.Eng, kelima mahasiswa tersebut membuat alat kedokteran gigi yang merupakan penggabungan dari toolbox dan oven pensterilan menjadi satu alat dimana alat ini lebih efektif, modern, dan efisien untuk dibawa dan digunakan dimana-mana dengan tujuan untuk memudahkan pekerjaan dokter gigi. Read More…

JAKARTA - Inisiatif perguruan tinggi dalam menghasilkan inovasi kendaraan ramah lingkungan maupun menggunakan energi alternatif kian masif. Salah satunya datang dari Universitas Brawijaya (UB).

Saat ini kampus yang terletak di Kota Malang, Jawa Timur itu sedang merintis riset untuk membuat kendaraan listrik cerdas. Riset dilakukan oleh dosen di bidang elektronika  dan kontrol yakni Ir. Wijono, M.T., Ph.D, Waru Djuriatno, S.T., M.T., dan Eka Maulana, ST., M.Eng. Ketiga dosen Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya tersebut meneliti dan mengembangkan kendaraan listrik cerdas ramah lingkungan berbasis teknologi Smart Electric Vehicle (SEV). Saat ini, riset dalam tahapan meneliti dan merancang Electronic Control Unit (ECU) yang berfungsi sebagai pengendali SEV secara terpadu baik dari sisi hardware maupun software.

Read More…

DESIGN OF 16 TO 1 MULTIPLEXER IC USING HIGH SPEED CMOS TECHNOLOGY

Eka Maulanaa, M Julius Stb, R Arief Setyawanc, Ceri Ad, Tito Panca Ne

abc Lecturer, Department of Electrical Engineering, Brawijaya University,
Jln. MT Haryono no. 167, Malang, Indonesia; Tel: + 62-81-233262589;
E-mail:
ekamaulana@ub.ac.id, mjulius.st@gmail.com, rarief@ub.ac.id

de Under Graduate, Department of Electrical Engineering, Brawijaya University,
Jln. MT Haryono no. 167, Malang, Indonesia; Tel: + 62-81-234685695;
E-mail: ceri.ahend4390@gmail.com, titopancanugraha@gmail.com

ABSTRACT

In this research is designed a digital multiplexer IC of 16 to 1 High Speed Complementary Metal Oxide Semiconductor (HCMOS) for digital circuit applications. The purpose of this research is an analysis to improve the CMOS characteristic such as Voltage Transfer Characteristic (VTC), propagation delay, and power dissipation, ie: to minimize the value of propagation delay and power dissipation than previous CMOS design. The HCMOS schematic and layout was drawn in DSCH and Microwind2 software, respectively. A PSpice simulation software was used to test the schematic characteristic. A 5 volt DC power supply was used in this schematic design and coupling capacitor was ≤ 5pF. We used the maximum frequence, KN, KP parameters of 10 MHz, 40 µA/V2 and 16µA/V2, respectively. This design is supposed to be an average propagation delay of less than 70 ns.The result of research shows that VTC are VIL = 2.92 volt, VOL = 0 volt, VIH = 2.94 volt, and VOH = 5 volt; then the Noise Margins are NMH = 2.06V and NML = 2.92V. The simulation result of time propagation delay are tPLH = 9.79 ns, tPHL = 3.92 ns, and tPD = 6.85 ns. The output of power dissipation is 125µW. The design of schematic layout area without I/O pad is 1189,1 µm x 23,3 µm and the area with I/O pad is 1625.5 µm x 1625.5 µm. Based on simulation results show that the specification and design of 16 to 1 Multiplexer IC by using High Speed ​​CMOS technology (HCMOS) has the speed 13.43 ns faster than DM74150 TTL and 152.25 ns faster than MM54C150J CMOS IC. Comparing to the both of ICs, the power dissipation of this design is 109.91 nJ lower than CMOS and 6.792 nJ lower than TTL IC.

KEY WORDS: Multiplexer, HCMOS, Propagation Delay, Power Dissipation

Full Paper (PDF)

Nets 2013 Proceeding DSSC

ORGANIC SOLAR CELL BASED ON EXTRACTION OF PAPAYA (Carica papaya) AND JATROPHA (Ricinus communis) LEAVES IN DSSC (DYE SENSITIZED SOLAR CELL)

Sholeh Hadi Pramono, Eka Maulana, M. Julius St.,  and Teguh Utomo

Electrical Engineering Department, Brawijaya University
Jl. MT Haryono 167 Malang 65145, Ph./Fax: 0341-554166
sholehpramono@ub.ac.id, ekamaulana@ub.ac.id

Abstract

This article shows an experimental result of  DSSCs (Dye Sensitized Solar Cell) fabrication and characterization of based on papaya (Carica papaya L.) leaves and  jatropha (Ricinus communis) leaves. Chlorophyll was extracted from the both leaves as organic dye materials to replace previous solar cells based on inorganic materials such as silicon. A TCO (Transparent Conductive Oxide) was used as a substrate material that surrounds the inner layer of DSSC. TiO2 nano particles, natural dyes, electrolytes, and counter electrode combined as an donor-acceptor layer. Thick film screen printing method is used for the adhesion of the TiO2 layer to the substrate. Couples of iodine and tri-iodine electrolyte solution used as an electron donor layer.  We designed the active area cell size of 1.8 x 1.8 cm on two layers of TCO glass substrate. The wavelength absorption measurements of extracted chlorophyll occurs in the spectrum of 300-700nm. We measured open circuit voltages (Voc)  under light illuminance of 18,000 lux are 289 and 245 mV of  papaya and jatropha leaves, respectively. A Sort circuit current was achieved at -17 and -6.7 µA. These cells have already reached fill factors (FF) exceeding 26% and 25%.

Keywords: DSSC, chlorophyll, organic, papaya, jatropha leaves.

References
  1. O’ Regan, M Gratzel. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737-739
  2. M. Gratzel. Photoelectrochemical cell. Nature 414 (2001) 338-344.
  3. S. Ito, T. N. Murakami, et.al, Fabrication of thinfilm dye sensitized solar cell with solar to electric power conversion effieciency over 10%, Thin Solid Film 516 (2008) 4613-4613.
  4. M. Gratzel, Photovoltaic Performance and  long-term stability of dye-sensitized solar meosocopic solar cell, C. R. Chimie 9 (2006) 578-583.
  5. S. Ito, P. Chen, P. Comte, et. al, Fabrication of Screen Printing Pastes From TiO2 Powders for Dye-Sensitized Solar Cells. Prog. in Photovolaics: Research and Applications (2007)  DOI: 10.100/pip. 768.
  6. M. Syahid, et. al, Recent Advancement in natural dye applications: a review.  Jurnal of Cleaner Production  (2013) 1-22.
  7. I. K. Ding, J. M. Kyriazi, N. L. Cevey-Ha, et.al, “Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading, Organic Electronic 11 (2010) 1217-1222.
  8. S. S. Kim, et. al, Annealing-free fabrication of P3HR:PCBM solar cell via simple brush painting, Solar Energy Material and Solar Cell 94(2010) 171-175.
  9. V. W. W. Yam , WOLEDs and Organic Photovoltaics.   New York: Springer-Verlag, 2010, ch. 1

paper (pdf)

QR Code

Effect of Ethanol-96% In Gasoline with Mixture Ratio Of 1:9 And 2:8 On The Combustion And Emission of 125cc Four-Stroke Engine

Dwi Fadila KURNIAWAN, Eko SISWANTO, Erni YUDANINGTYAS and Eka MAULANA

Electrical Engineering Department, Brawijaya University
Jl. MT Haryono 167 Malang 65145, Ph./Fax: 0341-554166
email: df_kurniawan@ub.ac.id

Abstract

This paper is purposed to describe the development of a main control unit (MCU) in an engine to support the transition in the use of fuel, from gasoline to ethanol. The study was conducted in several stages, beginning with the initial determination of the engine character engine, followed by an in-depth observation on the effect of ethanol in a gasoline mixture with proportion of 1:9 and 2:8. Furthermore an MCU was designed to optimize the combustion process of the mixture. So far, it is found that the addition of ethanol results in less perfect combustion in a standard engine while at same time decreasing the CO gas emission level, increasing HC and O2 gases, whereas the CO2 gas tends to remain.

Keywords – MCU, ethanol, combustion, four stroke engine.

REFERENCES
  1. Rice, R.W., Sanyal, A.K., Elrod, A.C., Bata, R.M., 1991. Exhaust gas emissions of butanol, ethanol and methanol–gasoline blends. Journal of Engineering for Gas Turbine and Power 113, 337–381.
  2. Waytulonis, Robert., Kittelson, David., Zarling, Darrick, 2008, “E20 Effects in Small Non-Road SI Engines”, Report to the Minnesota Department of Commerce, A literature and Information Search Center for Diesel Research, University of Minnesota
  3. Wittawat Imerb1, Chinda Charoenphonphanich2*, Pongsak Kummool2, Nuwong Chollacoop3 and Katsunori Hanamura4, 2010, “Starting Characteristics of an Engine using Neat Ethanol “, The First TSME International Conference on Mechanical Engineering, 20-22 October, 2010, Ubon Ratchathani
  4. Sitthiracha, Sitthichok, 2006, ” An Analytical Model of Spark Ignition Engine for Performance Prediction” Thesis, Automotive Engineering, King Mongkut’s Institute of Technology North Bangkok
  5. Al-Farayedhi, A. A., Al-Dawood, A. M. and Gandhidasan, P. 2004, “Experimental investigation of SI engine performance using oxygenated fuel.” Journal of Engineering for Gas Turbines and Power. Vol. 126 (2004) : 178-191.
  6. Boretti, Alberto, 2010, ” Analysis of Design of Pure Ethanol Engine”, University of Ballarat, Ballarat, Victoria, Australia
  7. Pikūnas Alvydas Saugirdas Pukalskas , Juozas Grabys , “Influence of Composition of Gasoline – Etahnol Blends on Parameters of Internal Combustion Engine, Journal of KONES Internal Combustion Engines 2003, vol. 10, 3-4

paper (pdf)